
TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

TSharkRex™

Programming Language

and platform

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -1- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Table of contents
Introduction TSharkRex™ Programming language...4

Reserved keywords..5
Anatomy of TSharkRex™ code...6

Comments..6
Code Flow Control...9

IF, THEN, ELSE, ELSIF, END_IF statement..10
CASE OF, ELSE, END_CASE statement...11
WHILE, END_WHILE...12
FOR, END_FOR..13

Data types...14
Data types and variables..14
ARRAY..15

Function and Function blocks..17
CAN_RX (ID, EXT, ENABLE, DATA, DATALENGTH, AVAILABLE)....................................18

Function block inputs..18
Function block outputs..19

CAN_TX(EXT, ID, DATA, DATALENGTH)...20
Function block inputs..20
Function block outputs..20

CAN_MODE (MODE, BAUDRATE)..21
CAN_FILTER (SLOT, ID, EXT)..23
CAN_MASK(SLOT, ID, EXT)...24
TON (IN, PT, Q)..25
TOF (IN, PT, Q)...25
R_TRIG (CLK, Q)...26
F_TRIG (CLK, Q)...27
OUTPUT (VALUE)...28
DEBUG (ID, DATA)...29
HARDWARE(SUPPLY_VOLTAGE, GYRO_X, GYRO_Y, GYRO_Z)......................................30

Operators..31
AND...31
Operator: ’ / ’..32
Operator: ’ + ’..32
Operator: ’ - ’...32

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -2- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Operator: ’ * ’...32
Operator: ’ = ’..33
Operator: ’ < > ’...33
Operator: ’ < ’ and ’ > ’..33
Operator: ’ <= ’ and ’ >= ’..34
Parenthesis ’ () ’...34

Code examples..35
Volkswagen wake-up and sleep routine...35
Library & recipe for Opel Vectra 2007..36

Traceability...37
Reference document..37
Revision...37

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -3- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Introduction TSharkRex™ Programming language
TSharkRex™ Programming language is a high level programming language aimed to work and
function as the Structured Text language according to IEC 61131-3 standard.

TSharkRex™ Programming Language

By reading this manual you will be given a better understanding how TSharkRex™ is working and
how to use it to write your own code.

TSharkRex™ Introduction Manual

TSharkRex™ is similar to Structured Text as of the standard IEC 61131-3 but have some small
differences. Let’s write some code and analyze it after.

VAR
A : BOOL; //It’s a variable
B : BOOL; (* This also *)

END_VAR;

VAR_OUTPUT
OUT : OUTPUT;

END_VAR;

IF A OR B THEN
OUT(VALUE := TRUE);

END_IF;

The above code is a simple snippets who activates an output (on a XBB PowerUnit™ for instance)
when either A or B variable is TRUE. To comment in the code you can just simply use ‘//’ or for
multi line commenting using ‘(* *)’

TSharkRex™ have a few special declarations to be aware of; VAR_OUTPUT and VAR_SIGNAL.
They are used to direct the work flow of the tool chain when compiling the code when using the
Online TSharkRex™ Platform.

Both of them are equal to VAR and can hold all types of variable declarations, but the variables will
show up as special variables when used on the Online TSharkRex™ Platform.

TSharkRex™ is just as IEC 61131-3 Structured Text case sensitive keep that in mind when writing
your code.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -4- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Reserved keywords

Some keywords are reserved in TSharkRex™ that is used by either built-in function blocks or
functions.

When using libraries in your code all variables, function blocks and functions in the library will be
obfuscated and theoretical all of them is considered reserved keywords, but because of the
obfuscation you will not likely be able to match the same name of variables or function blocks
when writing your code.

The following keywords are reserved and can not to be used as variables.

• IF • OR

• THEN • FUNCTION

• END_IF • END_FUNCTION

• CASE • FUNCTION_BLOCK

• OF • END_FUNCTION_BLOCK

• END_CASE • VAR

• ELSE • VAR_SIGNAL

• ELSIF • VAR_INPUT

• WHILE • VAR_OUTPUT

• DO • CONSTANT

• END_WHILE • END_VAR

• ARRAY • CAN_MODE_CONFIG

• TRUE • CAN_MODE_NORMAL

• FALSE • CAN_MODE_SLEEP

• NOT • CAN_MODE_DEEP_SLEEP

• AND • CAN_MODE_SILENT

Please note that also built in function blocks and functions are considered reserved keywords, but
they are not listed here.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -5- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Anatomy of TSharkRex™ code
The code below is a typical TSharkRex™ code. It is divided in sections for easy reference and
described after each section.

VAR
TIMER1 : TON;
COUNTER : BYTE;

END_VAR;

Declaration of variables can be placed anywhere in the code but it will only be executed once.
TIMER1 is an instance of a built in function block called TON.

COUNTER is declared as a BYTE (COUNTER can be anything between 0 and 255).

TIMER1(IN := TRUE, PT := T#200ms);

IF TIMER1.Q THEN
COUNTER := COUNTER + 1;
IF COUNTER > 10 THEN

TIMER1(IN := FALSE);
END_IF;

END_IF;

TIMER1 is simply a timer that is started when IN is set to TRUE, and the Q flag will be TRUE
when PT time has been fulfilled. Above code is activating the timer and after 200 milliseconds it
will increment COUNTER to 11, after that it will reset the timer and every 200 milliseconds after it
will increment COUNTER by one and reset the timer.

Comments

While writing your own code comments are useful to make notes and sometimes exclude code
snippets that you for some reason don’t want in your code but really don’t want to remove
completely.

Comments in VAR_SIGNAL will show up in the Online TSharkRex™ Platform for better
understanding when you using libraries. All comments will be shown in green text and Italic style
on the Online TSharkRex™ Platform.

Use ‘//’ for single line comments and ‘(* *)’ for multi line comments.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -6- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Constants

Constants can be in form of integer, BOOL, BYTE, INT and DINT. It is possible to specify the
value in decimal, binary or hexadecimal notation.

VAR
MYCONST : BYTE;

END_VAR;

MYCONST.0 := TRUE; // First bit in byte set to 1.
MYCONST := 10; // Set to decimal 10.
MYCONST := 0x10; // Set to hexadecimal 0x10.

VAR

The VAR statement is used to initiate the section where variables can be declared. It’s allowed to
have more than one VAR section within the same scope.

VAR statement must always be closed with END_VAR;

VAR_OUTPUT

The VAR_OUTPUT statement is used to initiate the section where output variables can be declared.
In the Online TSharkRex™ Platform you can only have one VAR_OUTPUT section within the
same scope. If you add more than one VAR_OUTPUT the Online TSharkRex™ Platform will only
display the first section found in the source code.

Therefore declared Output variables will not be shown in the XBB Configurator App for instance.
However the compiler will treat VAR_OUTPUT same as VAR and VAR_SIGNAL.

VAR_SIGNAL

The VAR_SIGNAL statement is used to initiate the section where signal variables for libraries can be
declared. In the Online TSharkRex™ Platform you can only have one VAR_SIGNAL section within
the same scope. If you add more than one VAR_SIGNAL the Online TSharkRex™ Platform will
only display the first section found in the source code.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -7- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

END_VAR

The END_VAR statement ends a section that was initiated with VAR, VAR_OUTPUT or
VAR_SIGNAL statements.

Example of various VAR statements:

VAR
MY_BYTE : BYTE;

END_VAR;

VAR_OUTPUT
MY_OUTPUT : OUTPUT;

END_VAR;

VAR_SIGNAL
MY_SIGNAL : BOOL;

END_VAR;

IF MY_BYTE = MY_BYTE2 THEN
MY_SIGNAL := TRUE;

END_IF;

MY_OUTPUT(VALUE := MY_SIGNAL);

VAR
MY_BYTE2 : BYTE;

END_VAR;

Above example has two VAR statements where the second one is at the end of the code which does
not matter for the compiler. MY_BYTE2 will be declared in the same way as the first VAR statement.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -8- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Code Flow Control
Following pages describe the various elements of the TSharkRex™ Programming Language that
control the flow of a program. The elements are divided into two groups, conditional execution and
iterative execution.

Conditional execution:

• IF, THEN, ELSE, END_IF

• CASE OF, END_CASE

Iterative execution:

• WHILE, END_WHILE

• FOR, END_FOR

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -9- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

IF, THEN, ELSE, ELSIF, END_IF statement

IF Statements are used for conditional execution of code in TSharkRex™.

IF <expression> THEN
statement;

ELSIF <expression> THEN
statement;

ELSE
statement;

END_IF;

The <expression> is an expression that evaluates to a BOOL, and therefore it is always TRUE or
FALSE, the statement after THEN is executed if the <expression> is TRUE. To evaluate an INT or
BYTE you can only use single bit with the punctuation syntax or use operators to get a true/false
state.

Example:

VAR
MYBYTE : BYTE;
MYBOOL : BOOL;

END_VAR;

IF (MYBYTE.0) OR (MYBYTE > 0) THEN
MYBOOL := FALSE;

END_IF;

All operators can be used in the IF statements
Example:

VAR
BYTE1 : BYTE;
BYTE2 : BYTE;
MYBOOL : BOOL;

END_VAR;

BYTE1 := 2;
BYTE2 := 10;

IF ((((BYTE1 * 5) = BYTE2) + 5) = 5) OR MYBOOL = TRUE THEN
MYBOOL := FALSE;

END_IF;

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -10- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

CASE OF, ELSE, END_CASE statement

CASE Statements are used for conditional execution of code in TSharkRex™.

Syntax:

CASE <variable> OF
<number 1>:

statement;
<number 2>:

statement;
<number 7>:

statement;
ELSE

statement;
END_CASE;

<variable> evaluates to a number. If one of the <number..> values has the same value as <variable>
the statement will be executed. If none of the <number..> value matches the <variable> value the
statement after the ELSE statement will be executed.

If there are no ELSE statement, the code after END_CASE will be executed. The <variable> can
only be BOOL, INT, BYTE or DINT.

Example:

VAR
COUNTER : BYTE;
MYBOOL : BOOL;

END_VAR;

CASE COUNTER OF
1: MYBOOL := FALSE;
2: MYBOOL := TRUE;

ELSE
MYBOOL := NOT MYBOOL;

END_CASE;

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -11- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

WHILE, END_WHILE
WHILE statements are used for repetitive conditional execution of code in TSharkRex™.

Syntax:

WHILE <expression> DO
statement;

END_WHILE;

The <expression> is an expression that evaluates to a BOOL, and therefore it is always TRUE or
FALSE, the statement after DO is executed if the <expression> is TRUE.

To evaluate an INT or BYTE you can only use single bit with the punctuation syntax or use
operators to get an TRUE/FALSE state.

The WHILE statement will repeat until <expression> is FALSE.

Example:

VAR
COUNTER : BYTE;

END_VAR;

WHILE COUNTER < 10 DO
COUNTER := COUNTER + 1;

END_WHILE;

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -12- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

FOR, END_FOR
FOR statements are used for repetitive conditional execution of code in TSharkRex™.

Syntax:

FOR <variable> := <start_value> TO <end_value> DO
statement;

END_FOR;

The statement; are executed as long as the counter <variable> is not greater than the <end_value>.
This is checked before executing the statement;. As clarification, statement; will not be executed if
<variable> is greater than <end_value>.

When statement; are executed the <variable> is increased by 1.

Example:

VAR
COUNTER : BYTE;
MYARRAY : ARRAY[0..7] OF BYTE;

END_VAR;

FOR COUNTER := 0 TO 7 DO
MYARRAY[COUNTER] := 0xFF;

END_FOR;

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -13- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Data types
Different variables and data types can be used in TSharkRex™. Variables are used as placeholders
for values. A variable can hold data of different sizes and types. TSharkRex™ only supports integer
data types.

Data types and variables

BOOL, BYTE, INT and DINT are supported in TSharkRex™

Type Lower limit Upper limit Memory space

BOOL 0 1 8 Bit

BYTE 0 255 8 Bit

INT -32768 32767 16 Bit

DINT -2147483648 2147483647 32 Bit

As a result when larger types are converted to smaller types, information may be lost.

BOOL

BOOL type variables may be given the values TRUE or FALSE. 8 bits of memory space will be
reserved.

BYTE

BYTE type variables may be given the values 0 to 255. 8 bits of memory space will be reserved.

INT

INT type variables may be given the values -32768 to 32767. 16 bits of memory space will be
reserved.

DINT

DINT type variables may be given the values -2147483648 to 2147483647. 32 bits of memory
space will be reserved.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -14- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

ARRAY

An Array is used to group different data types. TSharkRex™ supports 1 dimensional arrays. The
actual number and size of an array is only limited by the available memory (with an upper
theoretical border of 145 232 534 555 328 511 arrays).

Syntax:
<name_of_array> : ARRAY[<lower_limit>..<upper_limit>] OF <data_type>
Where <lower_limit> is 0, <upper_limit> is theoretical 145232534555328511 and <data_type> is BOOL,
BYTE, INT or DINT.

Example:

VAR
MYDATA1 : ARRAY[0..5] OF BOOL;
MYDATA2 : ARRAY[3..6] OF DINT;
MYDATA3 : ARRAY[0..7] OF BYTE;

END_VAR;

MYDATA1[4] := FALSE;
MYDATA2[3] := 123456789;
MYDATA3[0] := 0xFF;

Accessing an array component is used by the following syntax:
<name_of_array>[<index>]

Please see above Example code.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -15- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Predefined constants
There are a number of constants defined in TSharkRex™

TRUE

TRUE is used to define variables of the type BOOL and it value are 1.

FALSE

FALSE is used to define variables of the type BOOL and it value are 0.

CAN_MODE_CONFIG

CAN_MODE_CONFIG is used to define which state function block CAN_MODE are in. It
evaluates to 0.

CAN_MODE_NORMAL

CAN_MODE_NORMAL is used to define which state function block CAN_MODE are in. It
evaluates to 1.

CAN_MODE_SLEEP

CAN_MODE_SLEEP is used to define which state function block CAN_MODE are in. It evaluates
to 2.

CAN_MODE_DEEP_SLEEP

CAN_MODE_DEEP_SLEEP is used to define which state function block CAN_MODE are in. It
evaluates to 3.

CAN_MODE_SILENT

CAN_MODE_SILENT is used to define which state function block CAN_MODE are in. It evaluates
to 4.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -16- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Function and Function blocks
Currently TSharkRex™ only supports built-in function and function blocks. Listed below is all
currently built-in function and function blocks that is supported.

• CAN_RX • R_TRIG

• CAN_TX • F_TRIG

• CAN_MODE • OUTPUT

• CAN_FILTER • DEBUG

• CAN_MASK • HARDWARE

• TON

• TOF

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -17- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

CAN_RX (ID, EXT, ENABLE, DATA, DATALENGTH, AVAILABLE)
CAN_RX is a function block that receives a CAN message (8 bytes long) on specified CAN ID.
CAN_RX supports standard 11-bit identifier and also extended 29-bit identifiers.

As standard, if not CAN_MODE function block has been initialed transmission speed will be 500
kbit/s.

Function block inputs

CAN_RX have 3 inputs ID, EXT, and ENABLE.

• ENABLE
To initiate an instance of CAN_RX, the function block must be executed in the code. When
ENABLE flag is set to TRUE, the hardware CAN message queue will update and receive
messages that corespondents to selected ID.

If ENABLE is set to FALSE the function block will still be executed but no messages will
arrive in the hardware CAN message queue.

• EXT
To read extended 29-bit Identifiers the EXT flag must be set to TRUE, if EXT flag is set to
FALSE 29-bit identifiers will be ignored.

• ID
To set up the CAN hardware message queue correctly user must specify which ID to read.
11-bit identifiers allows a total of 2^11 different messages. A 29 bit identifier allows a total
of 2^29 different messages.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -18- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Function block outputs

CAN_RX have 3 outputs DATA, DATALENGTH and AVAILABLE.

• DATA
When the CAN hardware message queue receives a message that match the specified ID it is
stored in DATA and available to use in the code.

• DATALENGTH
When the CAN hardware message queue receives a message that match the specified ID it
will store the length of the data array in DATALENGTH.

• AVAILABLE
When one or more messages are received in the CAN hardware message queue the output
variable AVAILABLE will represent the number of messages in the queue.

Examples of CAN_RX:

VAR
READCAN : CAN_RX;
SENDCAN : CAN_TX;
MYDATA : ARRAY[0..7] OF BYTE;

END_VAR;

READCAN(ENABLE := TRUE, EXT := FALSE, ID := 0x100, DATA := MYDATA);

IF (READCAN.AVAILABLE > 0) THEN
SENDCAN(ID := 0x101, DATA := MYDATA, DATALENGTH := READCAN.DATALENGTH);

END_IF;

Above example will wait for a message on ID 0x100, copy the data to array MYDATA, send it out
on CAN again with ID 0x101, with the DATALENGTH of recently received message on 0x100.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -19- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

CAN_TX(EXT, ID, DATA, DATALENGTH)
CAN_TX is a built in function block that sends a CAN message (maximum 8 bytes long) on
specified CAN ID. CAN_TX supports standard 11-bit identifier and also extended 29-bit identifiers.

As standard, if not CAN_MODE function block has been initialed transmission speed will be 500
kbit/s.

Function block inputs

CAN_TX have 2 inputs EXT and ID.

• EXT
To send extended 29-bit Identifiers the EXT flag must be set to TRUE, if EXT flag is set to
FALSE only 11-bit identifiers can be sent out.

• ID
To send out a message on specific ID. 11-bit identifiers allows a total of 2^11 different
message IDs. A 29 bit identifier allows a total of 2^29 different message IDs.

Function block outputs

CAN_TX have 2 outputs DATA and DATALENGTH.

• DATA
Maximum an 8 byte long ARRAY of BYTE that sends out on CAN.

• DATALENGTH
Length of the CAN message that will be sent out on CAN.

Examples of CAN_TX:

VAR
SENDCAN : CAN_TX;
MYDATA : ARRAY[0..7] OF BYTE;

END_VAR;

SENDCAN(ID := 0x100, DATA := MYDATA, DATALENGTH := 8);

Above example will send out a CAN message, 8 bytes long every cycle with the data contained in
MYDATA.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -20- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

CAN_MODE (MODE, BAUDRATE)
CAN_MODE is a built in function block where the user can change different settings and baud rate
for the hardware CAN controller. 2 inputs are available, MODE and BAUDRATE.

4 different modes flags can be selected.

• CAN_MODE_CONFIG
Must be selected if user wants to change BAUDRATE, CAN_FILTER and CAN_MASK after
BAUDRATE, CAN_FILTER or CAN_MASK has been changed/set user must initialize
CAN_MODE with flag CAN_MODE_NORMAL again.

• CAN_MODE_NORMAL
Normal mode where CAN can send and receive data on the CAN network.

• CAN_MODE_SLEEP
The hardware CAN controller has an internal sleep mode that is used to minimize the
current consumption of the device. The hardware CAN controller interface remains active
for reading even when the hardware CAN controller is in sleep mode.

When in sleep mode, the wake-up interrupt is still active. When in sleep mode, the hardware
CAN controller stops its internal oscillator. The hardware CAN controller will wake-up
when bus activity occurs. The transmit will remain in the recessive state while the hardware
CAN controller is in sleep mode.

• CAN_MODE_SILENT
Provides a means for the hardware CAN controller to receive all messages (including
messages with errors).

This mode can be used for bus monitor applications. CAN_MODE_SILENT mode is a silent
mode, meaning no messages will be transmitted while in this mode (including error flags or
Acknowledge signals).

In CAN_MODE_SILENT, both valid and invalid messages will be received, regardless of
filters and masks.

• CAN_MODE_DEEP_SLEEP
This flag turns off the hardware CAN transceiver and no CAN messages can be sent or
received. This flag is to reduce power consumption.

See examples of CAN_MODE on next page:

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -21- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Example of CAN_MODE (CAN_MODE_CONFIG):

VAR
SETCAN : CAN_MODE;
SETFILTER : CAN_FILTER;
GETCAN : CAN_RX;

MYDATA : ARRAY[0..7] OF BYTE;
FIRSTCYCLE : BOOL;

END_VAR;

IF NOT FIRSTCYCLE THEN
SETCAN(MODE := CAN_MODE_CONFIG);
SETFILTER(SLOT := 0, ID := 0x100);
SETCAN(MODE := CAN_MODE_NORMAL);
FIRSTCYCLE := FALSE;

END_IF;

GETCAN(ENABLE := TRUE, ID := 0x100, EXT := FALSE, DATA := MYDATA);

Above example shows how CAN_MODE is used to set the hardware CAN controller to
configuration mode, after that we activate the first CAN_FILTER to 0x100. The hardware CAN
controller will only allow messages with identifier 0x100 to pass.

After that we set CAN_MODE to CAN_MODE_NORMAL again.

Example of CAN_MODE (CAN_MODE_SILENT):

VAR
SETCAN : CAN_MODE;
GETCAN : CAN_RX;

MYDATA : ARRAY[0..7] OF BYTE;
FIRSTCYCLE : BOOL;

END_VAR;

IF NOT FIRSTCYCLE THEN
SETCAN(MODE := CAN_MODE_SILENT);
FIRSTCYCLE := FALSE;

END_IF;

GETCAN(ENABLE := TRUE, ID := 0x100, EXT := FALSE, DATA := MYDATA);

Above example shows how the hardware CAN controller is set to Silent mode.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -22- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

CAN_FILTER (SLOT, ID, EXT)
CAN_FILTER is a built in function block. The hardware CAN controller can utilize up to 6
different filters simultaneously. Each filter (0-5) is selected with function block input parameter
SLOT, function block input ID sets the desired identifier which can be both 11-bit or 29 bit
depending on function block input EXT (FALSE = 11-bit, TRUE = 29-bit).

 Filter & Mask Truth table

Mask Bit n Filter Bit n Message Identifier Bit Accept or Reject Bit n

0 x x Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

 Note: x = don’t care.

Note!

The hardware CAN Controller must be in CAN_MODE_CONFIG before CAN_FILTER can be
used. Please see example below.

Example of CAN_FILTER:

VAR
SETCAN : CAN_MODE;
SETFILTER : CAN_FILTER;
SETMASK : CAN_MASK;
GETCAN : CAN_RX;

MYDATA : ARRAY[0..7] OF BYTE;
FIRSTCYCLE : BOOL;

END_VAR;

IF NOT FIRSTCYCLE THEN
SETCAN(MODE := CAN_MODE_CONFIG);
SETMASK(SLOT := 0, ID := 0x07FF);
SETFILTER(SLOT := 0, ID := 0x100); //Only this message will be received
SETFILTER(SLOT := 1, ID := 0x110); //Only this message will be received
SETCAN(MODE := CAN_MODE_NORMAL);
FIRSTCYCLE := FALSE;

END_IF;

GETCAN(ENABLE := TRUE, ID := 0x100, EXT := FALSE, DATA := MYDATA);

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -23- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

CAN_MASK(SLOT, ID, EXT)
CAN_MASK is a built in function block. The hardware CAN controller can utilize up to 2 different
mask simultaneously. Each mask (0-1) is selected with function block input parameter SLOT,
function block input ID sets the desired identifier mask which can be both 11-bit or 29 bit
depending on function block input EXT (FALSE = 11-bit, TRUE = 29-bit).

 Filter & Mask Truth table

Mask Bit n Filter Bit n Message Identifier Bit Accept or Reject Bit n

0 x x Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

 Note: x = don’t care.

Note!

The hardware CAN Controller must be in CAN_MODE_CONFIG before CAN_MASK can be used.
Please see example below.

Example of CAN_MASK:

VAR
SETCAN : CAN_MODE;
SETFILTER : CAN_FILTER;
SETMASK : CAN_MASK;
GETCAN : CAN_RX;

MYDATA : ARRAY[0..7] OF BYTE;
FIRSTCYCLE : BOOL;

END_VAR;

IF NOT FIRSTCYCLE THEN
SETCAN(MODE := CAN_MODE_CONFIG);
SETMASK(SLOT := 0, ID := 0x07FF);
SETFILTER(SLOT := 0, ID := 0x100); //Only this message will be received
SETFILTER(SLOT := 1, ID := 0x110); //Only this message will be received
SETCAN(MODE := CAN_MODE_NORMAL);
FIRSTCYCLE := FALSE;

END_IF;

GETCAN(ENABLE := TRUE, ID := 0x100, EXT := FALSE, DATA := MYDATA);

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -24- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

TON (IN, PT, Q)
The function block TON (Timer on Delay) implements a turn-on delay. IN, PT and Q are input
variables of data types BOOL, TIME and BOOL respectively.

If IN = FALSE, Q is FALSE. As soon as IN becomes TRUE, the timer will begin to count and when
the internal timer is equal to PT, Q will be TRUE.

The PT TIME data type can be written in different forms see examples below:

VAR
TIMER1 : TON;
TIMER2 : TON;
TIMER3 : TON;
TIMER4 : TON;
TIMER5 : TON;
TIMER6 : TON;

END_VAR;

TIMER1(IN := TRUE, PT := T#10ms); //10 milliseconds
TIMER2(IN := TRUE, PT := T#10s); //10 seconds
TIMER3(IN := TRUE, PT := T#10m); //10 minutes
TIMER4(IN := TRUE, PT := T#10h); //10 hours
TIMER5(IN := TRUE, PT := T#10d); //10 days
TIMER6(IN := TRUE, PT := T#10d10h10m10s10ms); //combined values, 10 days, 10 hours, 10 minutes...

TOF (IN, PT, Q)
The function block TOF implements a turn-off delay. IN, PT and Q are input variables of data types
BOOL, TIME and BOOL respectively.

Q = FALSE when IN = FALSE and when the internal timer is equal to PT, otherwise Q = TRUE.
The internal timer will start counting when IN = FALSE.

The PT TIME data type can be written in different forms see examples under TON:

VAR
TIMER1 : TOF;

END_VAR;

TIMER1(IN := FALSE, PT := T#10s); // after 10 seconds TIMER1.Q will be FALSE.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -25- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

R_TRIG (CLK, Q)
Function block R_TRIG detects a rising edge. The output Q will remain FALSE as long as the input
variable CLK is FALSE.

As soon as CLK returns TRUE, Q will first return TRUE and the next program cycle Q will return
FALSE until CLK has falling edge followed by a rising edge again.

Example:

VAR
SIGNAL : R_TRIG;
INPUT : BOOL;
COUNTER : BYTE;

END_VAR;

SIGNAL(CLK := INPUT); //Waiting for a rising edge on INPUT

IF SIGNAL.Q THEN //INPUT has been set to TRUE
COUNTER := COUNTER + 1; // COUNTER will increment by 1

END_IF;

Above example will only increment COUNTER every time the INPUT has changed it state from
TRUE-FALSE-TRUE.

When INPUT is TRUE the IF statement will only be executed once. Next program cycle will turn
SIGNAL.Q to FALSE and will remain false until CLK has been FALSE and TRUE again.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -26- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

F_TRIG (CLK, Q)
Function block F_TRIG detects a falling edge. The output Q will remain FALSE as long as the input
variable CLK is TRUE.

As soon as CLK returns FALSE, Q will first return TRUE, then the next program cycle Q will return
FALSE until CLK has a rising followed by a falling edge.

Example:

VAR
SIGNAL : F_TRIG;
INPUT : BOOL;
COUNTER : BYTE;

END_VAR;

SIGNAL(CLK := INPUT); //Waiting for a falling edge on INPUT

IF SIGNAL.Q THEN //INPUT has a falling edge
COUNTER := COUNTER + 1; // COUNTER will increment by 1

END_IF;

Above example will only increment COUNTER every time the INPUT has changed it state from
FALSE-TRUE-FALSE. When INPUT is FALSE the IF statement will only be executed once.

Next program cycle will turn SIGNAL.Q to FALSE and will remain false until CLK has been TRUE
and FALSE again.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -27- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

OUTPUT (VALUE)
Function block OUTPUT is a hardware specific function block where VALUE is a BOOL and
activates board specific outputs on the XBB Dongle™ and XBB PowerUnit™ hardware.

When using the Online TSharkRex™ Platform the declared name of the function block will be
showed and user can select it to drive specific outputs on the XBB PowerUnit™ hardware when
declared in the VAR_OUTPUT declaration.

See example:

VAR_OUTPUT
HIGHBEAM : OUTPUT;
LOWBEAM : OUTPUT;

END_VAR;

HIGHBEAM(VALUE := CAN_SIGNAL_HIGHBEAM);
LOWBEAM(VALUE := CAN_SIGNAL_LOWBEAM);

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -28- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

DEBUG (ID, DATA)
Function block DEBUG is used for debugging purpose over CAN, where ID identifies the DATA
sent over CAN. DEBUG will send out DATA over the CAN with the ID packed in the CAN data.

DEBUG function block will listen for a message on identifier 0xFFFFFFF when a message with
identifier 0xFFFFFFF occurs DEBUG will send out the ID and DATA on identifier 0x0FFFFFF
with the following CAN transmission message for 1 second.

ID ID-
name

Cycle
time
in ms

Launch
type

Signal byte
no.

Signal name Signal
length
(bit)

Normalization Value range

0x0FFFFFF Debug
msg

10 Cyclic for
1000 ms.

0 Debug ID 8 0x0-0xFF 0x0-0xFF

0x0FFFFFF Debug
msg

10 Cyclic for
1000 ms

1-7 Debug DATA 56 0x0-0xFF FFFF FFFF FFFF 0x0-0xFF FFFF FFFF FFFF

As above table, byte 0 contains the ID number and byte 1-7 DATA is sent in.

Example code:

VAR
DMSG : DEBUG;
VAR1 : DINT;
VAR2: BYTE;

END_VAR;

DMSG(ID := 0, VALUE := VAR1); //Sending out VAR1 value on CAN
DMSG(ID := 1, VALUE := VAR2); //Sending out VAR2 value on CAN

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -29- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

HARDWARE(SUPPLY_VOLTAGE, GYRO_X, GYRO_Y, GYRO_Z)
Function block HARDWARE is a hardware specific function block for XBB Dongle™ hardware.
The function block HARDWARE returns the supply voltage and the built in gyro values for X, Y and
Z direction.

It also have GYRO_X_HIGHPASS, GYRO_Y_HIGHPASS and GYRO_Z_HIGHPASS as outputs for
high pass filtrated values. Function block HARDWARE does not require any input values and every
time is executes it updates the values.

SUPPLY_VOLTAGE is returned in mV and the GYRO X,Y,Z outputs is in mG.

Example:

VAR
HW : HARDWARE;
SYSTEM_ON : BOOL;

END_VAR;

IF HW.SUPPLY_VOLTAGE > 12000 THEN
SYSTEM_ON := TRUE;

END_IF;

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -30- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Operators

AND

The logical operator AND operates on expressions with BOOL, BYTE, INT and DINT data types.
When operating on data types other than BOOL the operation is bit wise.

Input A Input B Output

0 0 0

0 1 0

1 0 0

1 1 1

NOT

The logical operator NOT operates on expressions with BOOL, BYTE, INT and DINT data types.
When operating on data types other than BOOL the operation is bit wise (all ‘1’ will be ‘0’, and all
‘0’ will be ‘1’).

Input Output

1 0

0 1

OR

The logical operator OR operates on expression with BOOL, BYTE, INT and DINT data types.
When operating on data types other than BOOL the operation is bit wise.

Input A Input B Output

0 0 0

0 1 1

1 0 1

1 1 1

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -31- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Operator: ’ / ’

The ‘/’ operator divides two integer numbers.

Example:

MYBYTE := 200 / 4;
MYDINT := MYBYTE / 2;

Operator: ’ + ’

The ‘+’ operator adds two integer numbers.

Example:

MYBYTE := 100 + 10;
MYDINT := MYBYTE + 10;

Operator: ’ - ’

The ‘-’ operator subtracts two integer numbers.

Example:

MYBYTE := 100 - 10;
MYDINT := MYBYTE – 10;

Operator: ’ * ’

The ‘*’ operator multiplies two integer numbers.

Example:

MYBYTE := 2 * 10;
MYDINT := MYBYTE * 10;

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -32- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Operator: ’ = ’

The ‘=’ operator compares two numbers or data types and returns TRUE if they are equal.

Example:

IF MYBYTE = MYDINT THEN // if MYBYTE and MYDINT has the same value the IF condition is met.
...

END_IF;

MYBOOL := MYBYTE = 10; //if MYBYTE is 10 then MYBOOL will be TRUE

Operator: ’ < > ’

The ‘< >’ operator compares two numbers or data types and returns TRUE if they are not equal.

Example:

IF MYBYTE <> MYDINT THEN // if MYBYTE and MYDINT has different values the IF condition is met.
...

END_IF;

MYBOOL := MYBYTE <> 10; //if MYBYTE is 10 then MYBOOL will be FALSE

Operator: ’ < ’ and ’ > ’

The ‘<’ operator compares two numbers or data types and returns TRUE if the left expression is
smaller than the right one. The ‘>’ operator compares two numbers or data types and returns TRUE
if the left expression is greater than the right one.

Example:

IF MYBYTE < MYDINT THEN // if MYBYTE is smaller than MYDINT the IF condition is met.
...

END_IF;

MYBOOL := MYBYTE > 10; //if MYBYTE is greater than 10 then MYBOOL will be TRUE.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -33- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Operator: ’ <= ’ and ’ >= ’

The ‘<=’ operator compares two numbers or data types and returns TRUE if the left expression is
smaller or equal than the right one. The ‘>=’ operator compares two numbers or data types and
returns TRUE if the left expression is greater or equal than the right one.

Example:

IF MYBYTE <= MYDINT THEN // if MYBYTE is smaller or equal to MYDINT the IF condition is met.
...

END_IF;

MYBOOL := MYBYTE >= 10; //if MYBYTE is greater or equal to 10 then MYBOOL will be TRUE.

Parenthesis ’ () ’

The brackets ‘()’ are used in expressions to force a specific order of execution.

Example:

MYBYTE := 10 + 10 * 5; // MYBYTE will be 60
MYBYTE := (10 + 10) * 5; // MYBYTE will be 100

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -34- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Code examples

Volkswagen wake-up and sleep routine.

VAR
CAN_RX_STATUS : CAN_RX;
CAN_RX_STATUS_DATA : ARRAY[0..7] OF BYTE;

 TIMER_FORDROJ_AVSTANGNING : TON;
TIMER_FORDROJ_NOLLSTALL : TON;
TIMER_RESTART : TON;
SYSTEM_INIT : BOOL;

END_VAR;

VAR_SIGNAL
SIGNAL_TANDNING : BOOL;

END_VAR;

CAN_RX_STATUS(ENABLE := TRUE, ID := 0x17F00010, EXT := TRUE, DATA := CAN_RX_STATUS_DATA);
IF CAN_RX_STATUS.AVAILABLE THEN

TIMER_FORDROJ_NOLLSTALL(IN := FALSE);
TIMER_FORDROJ_AVSTANGNING(IN := NOT SIGNAL_TANDNING, PT := T#120s);
IF NOT TIMER_FORDROJ_AVSTANGNING.Q THEN

 SYSTEM_INIT := TRUE;
TIMER_RESTART(IN := FALSE);

END_IF;

IF TIMER_FORDROJ_AVSTANGNING.Q THEN
SYSTEM_INIT := FALSE;
TIMER_RESTART(IN := TRUE, PT:=T#12s);
TIMER_FORDROJ_AVSTANGNING(IN := NOT TIMER_RESTART.Q);

END_IF;
END_IF;

IF NOT CAN_RX_STATUS.AVAILABLE THEN
TIMER_FORDROJ_NOLLSTALL(IN := TRUE, PT := T#1s);
IF TIMER_FORDROJ_NOLLSTALL.Q THEN

SYSTEM_INIT := FALSE;
TIMER_FORDROJ_AVSTANGNING(IN := FALSE);

END_IF;
END_IF;

Above code is a wake-up and sleep routine for VAG vehicles where there is not specific ignition
signal on the CAN network. What the code does is to check 0x17F00010 message ID and when
ignition turns off if waits 120 seconds before it stops sending out message and wait 12 seconds to
see if the vehicle stops sending out messages.

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -35- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Library & recipe for Opel Vectra 2007

VAR
DATA1 : ARRAY[0..7] OF BYTE;
CANRECV1 : CAN_RX;

CAN_TIMER1 : TON;
HELLJUS_R_TRIG : R_TRIG;

END_VAR

VAR_SIGNAL
SIGNAL_HELLJUS : BOOL;
SIGNAL_HALVLJUS : BOOL;

END_VAR;

CANRECV1(ENABLE := TRUE, ID := 0x381, EXT := FALSE, DATA := DATA1);

HELLJUS_R_TRIG(CLK := DATA1[1].3 AND DATA1[0].4);

IF (HELLJUS_R_TRIG.Q) THEN
SIGNAL_HELLJUS := NOT SIGNAL_HELLJUS;

END_IF;

IF (NOT SIGNAL_HALVLJUS) THEN
SIGNAL_HELLJUS := FALSE;

END_IF;

SIGNAL_HALVLJUS := DATA1[0].4;
CAN_TIMER1(IN := NOT CANRECV1.AVAILABLE , PT := T#500ms);

IF CAN_TIMER1.Q THEN
SIGNAL_HELLJUS := FALSE;
SIGNAL_HALVLJUS := FALSE;

END_IF;

Above library is used in below recipe. CAN message over OBD-II is read and signal for highlight
lever is read out. When low beam is activated then a R_TRIG will shift high beam output. When
low beam is turned off (ignition off or light switcher is set to off) the high beam output will be off.

VAR_OUTPUT
HIGHBEAM : OUTPUT;
LOWBEAM : OUTPUT;

END_VAR;

HIGHBEAM(VALUE := SIGNAL_HELLJUS);
LOWBEAM(VALUE := SIGNAL_HALVLJUS);

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -36- info@innoware.se – support@XBB.nu

TSharkRex™ PLATFORM

Programming Language

Document: EN-20200925-1

Traceability

Reference document
Denomination Publication number

Reference instruction Nr:EN-20200925-1

Revision
The following significant changes have taken place since the previous version:

Rev Page Description of
revision

Approved by
tech.
manager

Date App. by doc.
officer.

Date

1 ALL Creation of doc. KHS 20-09-25 KHS 20-09-25

2

3

4

5

Innoware Development AB, Hyttvägen 13, 733 38 Sala,
Sweden

Page This document may not be passed on to unauthorized parties or copied without our
consent, and its contents may not be disclosed to third parties or used. Breaches of

the above will incur liability. All rights reserved, particularly the right to file patents,
designs or design applications.

www.innoware.se – www.XBB.nu -37- info@innoware.se – support@XBB.nu

	Introduction TSharkRex™ Programming language
	Reserved keywords

	Anatomy of TSharkRex™ code
	Comments

	Code Flow Control
	IF, THEN, ELSE, ELSIF, END_IF statement
	CASE OF, ELSE, END_CASE statement
	WHILE, END_WHILE
	FOR, END_FOR

	Data types
	Data types and variables
	ARRAY

	Function and Function blocks
	CAN_RX (ID, EXT, ENABLE, DATA, DATALENGTH, AVAILABLE)
	Function block inputs
	Function block outputs

	CAN_TX(EXT, ID, DATA, DATALENGTH)
	Function block inputs
	Function block outputs

	CAN_MODE (MODE, BAUDRATE)
	CAN_FILTER (SLOT, ID, EXT)
	CAN_MASK(SLOT, ID, EXT)
	TON (IN, PT, Q)
	TOF (IN, PT, Q)
	R_TRIG (CLK, Q)
	F_TRIG (CLK, Q)
	OUTPUT (VALUE)
	DEBUG (ID, DATA)
	HARDWARE(SUPPLY_VOLTAGE, GYRO_X, GYRO_Y, GYRO_Z)

	Operators
	AND
	Operator: ’ / ’
	Operator: ’ + ’
	Operator: ’ - ’
	Operator: ’ * ’
	Operator: ’ = ’
	Operator: ’ < > ’
	Operator: ’ < ’ and ’ > ’
	Operator: ’ <= ’ and ’ >= ’
	Parenthesis ’ () ’

	Code examples
	Volkswagen wake-up and sleep routine.
	Library & recipe for Opel Vectra 2007

	Traceability
	Reference document
	Revision

